3.180 \(\int \sqrt{\sec (c+d x)} (a+a \sec (c+d x))^3 \, dx\)

Optimal. Leaf size=157 \[ \frac{4 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{d}+\frac{2 a^3 \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{5 d}+\frac{2 a^3 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{d}+\frac{36 a^3 \sin (c+d x) \sqrt{\sec (c+d x)}}{5 d}-\frac{36 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d} \]

[Out]

(-36*a^3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (4*a^3*Sqrt[Cos[c + d*x]]*El
lipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (36*a^3*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(5*d) + (2*a^3*Sec[c
+ d*x]^(3/2)*Sin[c + d*x])/d + (2*a^3*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d)

________________________________________________________________________________________

Rubi [A]  time = 0.160961, antiderivative size = 157, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {3791, 3771, 2641, 3768, 2639} \[ \frac{2 a^3 \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{5 d}+\frac{2 a^3 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{d}+\frac{36 a^3 \sin (c+d x) \sqrt{\sec (c+d x)}}{5 d}+\frac{4 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}-\frac{36 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^3,x]

[Out]

(-36*a^3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (4*a^3*Sqrt[Cos[c + d*x]]*El
lipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (36*a^3*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(5*d) + (2*a^3*Sec[c
+ d*x]^(3/2)*Sin[c + d*x])/d + (2*a^3*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d)

Rule 3791

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Int[Expand
Trig[(a + b*csc[e + f*x])^m*(d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
 && IGtQ[m, 0] && RationalQ[n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \sqrt{\sec (c+d x)} (a+a \sec (c+d x))^3 \, dx &=\int \left (a^3 \sqrt{\sec (c+d x)}+3 a^3 \sec ^{\frac{3}{2}}(c+d x)+3 a^3 \sec ^{\frac{5}{2}}(c+d x)+a^3 \sec ^{\frac{7}{2}}(c+d x)\right ) \, dx\\ &=a^3 \int \sqrt{\sec (c+d x)} \, dx+a^3 \int \sec ^{\frac{7}{2}}(c+d x) \, dx+\left (3 a^3\right ) \int \sec ^{\frac{3}{2}}(c+d x) \, dx+\left (3 a^3\right ) \int \sec ^{\frac{5}{2}}(c+d x) \, dx\\ &=\frac{6 a^3 \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{2 a^3 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d}+\frac{2 a^3 \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac{1}{5} \left (3 a^3\right ) \int \sec ^{\frac{3}{2}}(c+d x) \, dx+a^3 \int \sqrt{\sec (c+d x)} \, dx-\left (3 a^3\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\left (a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a^3 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{36 a^3 \sqrt{\sec (c+d x)} \sin (c+d x)}{5 d}+\frac{2 a^3 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d}+\frac{2 a^3 \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}-\frac{1}{5} \left (3 a^3\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\left (a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx-\left (3 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{6 a^3 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{4 a^3 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{36 a^3 \sqrt{\sec (c+d x)} \sin (c+d x)}{5 d}+\frac{2 a^3 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d}+\frac{2 a^3 \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}-\frac{1}{5} \left (3 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{36 a^3 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{4 a^3 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{36 a^3 \sqrt{\sec (c+d x)} \sin (c+d x)}{5 d}+\frac{2 a^3 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{d}+\frac{2 a^3 \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}\\ \end{align*}

Mathematica [C]  time = 2.16752, size = 267, normalized size = 1.7 \[ \frac{a^3 \sec ^6\left (\frac{1}{2} (c+d x)\right ) (\sec (c+d x)+1)^3 \left (\frac{18 \csc (c) \cos (d x)+\tan (c+d x) (\sec (c+d x)+5)}{\sec ^{\frac{5}{2}}(c+d x)}-\frac{2 i \sqrt{2} e^{-i (c+d x)} \sqrt{\frac{e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \cos ^3(c+d x) \left (9 \left (-1+e^{2 i c}\right ) \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (-\frac{1}{4},\frac{1}{2},\frac{3}{4},-e^{2 i (c+d x)}\right )+5 \left (-1+e^{2 i c}\right ) e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},-e^{2 i (c+d x)}\right )+9 \left (1+e^{2 i (c+d x)}\right )\right )}{-1+e^{2 i c}}\right )}{20 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^3,x]

[Out]

(a^3*Sec[(c + d*x)/2]^6*(1 + Sec[c + d*x])^3*(((-2*I)*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*
Cos[c + d*x]^3*(9*(1 + E^((2*I)*(c + d*x))) + 9*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometri
c2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + 5*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))
]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(E^(I*(c + d*x))*(-1 + E^((2*I)*c))) + (18*Cos[d*x]
*Csc[c] + (5 + Sec[c + d*x])*Tan[c + d*x])/Sec[c + d*x]^(5/2)))/(20*d)

________________________________________________________________________________________

Maple [B]  time = 2.288, size = 386, normalized size = 2.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^3,x)

[Out]

-a^3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(56/5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*
d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2
))-1/10*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^3-7
2/5*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)-36/5*(si
n(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/
2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-cos(1/2*d*x+1/2*c)*(-2*sin(1/
2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2
*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )}^{3} \sqrt{\sec \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^3*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a^{3} \sec \left (d x + c\right )^{3} + 3 \, a^{3} \sec \left (d x + c\right )^{2} + 3 \, a^{3} \sec \left (d x + c\right ) + a^{3}\right )} \sqrt{\sec \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

integral((a^3*sec(d*x + c)^3 + 3*a^3*sec(d*x + c)^2 + 3*a^3*sec(d*x + c) + a^3)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)*(a+a*sec(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )}^{3} \sqrt{\sec \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^3*sqrt(sec(d*x + c)), x)